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A new algorithm has been developed and implemented for solving the three-dimensional 
incompressible Navier-Stokes equations on a domain that is infinite in the vertical (.P) direc- 
tion, finite in the streamwise (x) direction, and homogeneous in the spanwise (z) direction. A 
mapped spectral method is used in y, a classical Fourier method is used in z, and high-order 
compact finite differencing is used in X. A projection method is discussed that ensures exact 
conservation of mass and satisfaction of the boundary conditions at infinity. The new aspects 
of these schemes are described, test cases to validate the code are presented, and results for 
two- and three-dimensional mixing layers are given. .(*’ 1991 Academic Press, Inc 

1. INTRODUCTION 

We present here a new algorithm for solving the three-dimensional time- 
dependent incompressible Navier-Stokes equations on domains typical of free-shear 
problems. The primary difficulty of solving these equations on nonperiodic domains 
is ensuring conservation of mass at each point in time. This is not difficult for the 
compressible equations since the equation for density is dynamical and can be 
advanced in time like the energy and momentum equations. Yet, the continuity 
constraint is also the primary advantage (in terms of numerical efftciency) of the 
incompressible equations over the compressible system. This constraint alone 
allows the number of dynamical variables that must be carried to be reduced from 
five to two. The amount of computer memory, disk space, and arithmetic opera- 
tions needed can be reduced by similar proportions. Therefore, unless the goal is to 
study the effect of compressibility itself, one should solve the incompressible 
equations and strive to extract all the possible efftciencies from doing so. 

There are several schemes in current usage that ensure continuity. For two- 
dimensional (2D) flows, streamfunction-vorticity or pure streamfunction formula- 
tions are effective and easily implemented, especially for second-order finite differen- 
cing. Comte et al. [l] used the former in conjunction with central differencing to 
study temporally- and spatially-growing mixing layers. For complex geometries, 
one usually resorts to primitive-variable finite difference methods. Probably the 
most popular subclass of these are second-order accurate staggered-grid methods 
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(e.g., see Kim and Moin [2], and references therein). When properly implemented, 
the numerical divergence of the gradient is identical to the Laplacian operator, both 
in the interior and adjacent to the boundaries. This allows one to formulate a 
Poisson equation for pressure (or related variable) that automatically yields a 
divergence-free velocity field. Davis and Moore [3] used this type of scheme in 
conjunction with upwind differencing in their 2D simulations of jets and mixing 
layers. One of the things we will show here is that extra numerical diffusion (in the 
form of upwinding or added artificial dissipation) is not necessary for free shear 
flows at moderate Reynolds numbers. 

A staggered-grid method with upwind differencing was used also in the three- 
dimensional (3D) mixing layer simulations of Lowery [4], but only in the 
streamwise direction. It was combined with the mapped spectral method of Cain et 
al. [S] in the vertical direction and a Fourier method in the spanwise direction [6]. 
The idea is that finite difference methods are more suitable for use with inflow/out- 
flow boundary conditions and that spectral methods should be used when the 
boundary conditions permit [7]. However, his implementation of the mapped spec- 
tral method produced flows that satisfied continuity and the boundary conditions 
only approximately. The continuity problem is indicative of the difficulty in general 
with primitive-variable formulations in finding a scalar field (pressure) whose 
gradient forces the velocity field to be divergence-free. (See Tuckerman [S] and 
references therein for analyses of primitive-variable spectral methods.) Despite these 
problems, Lowery’s algorithm turned out to be a good starting point for the 
development of the one presented here. 

Another class of schemes in 3D involves applying the curl operator to the 
momentum equations in order to eliminate the pressure and reduce the number of 
dynamical variables to two. This class is sometimes referred to as vector potential 
or vector streamfunction methods (2D streamfunction schemes are a special case of 
this class). These are usually restricted to simpler geometries. One method takes 
two of the components of the curl operation to obtain two vorticity equations. This 
method has been used in Cartesian coordinates (e.g., see Murdock [9]) and is 
particularly useful in cylindrical coordinates [lo]. Another method, applicable in 
Cartesian and spherical coordinates, takes one component of the curl operation and 
the same component of the curl operator applied twice to the momentum equations. 
The particular component chosen is the inhomogeneous direction (if there is only 
one), or the direction with the most complex boundary conditions. At this point, 
one may introduce solenoidal velocity fields based on similar operations [ 8, 111, or 
retain more primitive variables (i.e., the appropriate components of the velocity and 
vorticity [ 121). The former is conceptually simpler (especially for linear stability 
problems), but the latter appears to require fewer arithmetic operations and so it 
is the approach we take here. We note that, as far as the equation formulation is 
concerned, the inflow/outflow boundary conditions considered here cause the same 
difficulties (and yield to the same methods) as the rigid-wall conditions considered 
in the papers referred to above. An important advantage of this class of schemes is 
that continuity is either imposed directly or replaced with solenoidal velocity fields; 
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there is no extra restriction on the properties of the numerical approximation of the 
Poisson equation, as there is in primitive-variable formulations. Furthermore, given 
a set of boundary conditions, all vector potential methods are equivalent analyti- 
cally. However, with some of these methods the right number of boundary condi- 
tions are associated with each equation, while the other methods require solving the 
entire system of equations simultaneously with all the boundary conditions. While 
the latter may be accomplished with the use of a capacitance matrix method, it is 
always more work than the former. Thus, in practice, the choice of formulation is 
dictated by the ease of implementation of boundary conditions. 

The governing equations, boundary conditions, and general issues are discussed 
in the next section. The numerical method, based on high-order compact finite 
differencing in the streamwise direction and spectral methods in the other two, is 
described in Section 3. Three analytic tests of the resulting code are given in 
Section 4. In Section 5, examples of results from 2D and 3D simulations of mixing 
layers illustrate the capabilities of the method. Conclusions are presented in the last 
section. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

A general schematic and coordinate system for the class of free-shear problems 
we would like to solve is shown in Fig. 1. A mean inflow velocity profile, U,(y), is 
specified at x = 0. Perturbations added at the inflow will then develop in the 
streamwise direction (x). The domain extends to infinity in the vertical (y) direction 
and is assumed to be homogeneous in the spanwise (z) direction. At y = + co, finite 
entrainment velocities (that are independent of the horizontal coordinates and 
time) are specified. We assume U,(y) contains a length scale 6, and a velocity 
scale AU. For the mixing layer profile shown, 6, is the vorticity thickness and 
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FIG. 1. Problem geometry and coordinate system. 
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d U = U, - U, is the freestream velocity difference. Nondimensionalizing the 
Navier-Stokes and continuity equations with these scales yields 

(1) 

v.u=o, (2) 

where the advection terms in rotational form are written as H = U x o, the vorticity 
is u) =V x U and the Reynolds number is Re = 6,( Ur - U,)/v. An additional 
parameter for mixing layer profiles is the velocity ratio, defined here as n = U,/U,. 
We note that a larger velocity ratio (.4 + 1) makes the layer more temporal in 
nature [ 131, while a small ratio may yield a negative streamwise velocity at the exit 
plane. 

One of the reasons we need to eliminate the gradient term in (1) is because in 
the numerical approximation to be used here the divergence of the gradient is not 
exactly identical to the Laplacian. The other reasons (as mentioned above) are 
related to numerical efficiency. Also, since the numerical method requires 
homogeneous Dirichlet boundary conditions at infinity on all computational 
variables, we define a perturbation velocity u = (u, v, w) by 

w-6 YY z, t) = U,(Y) + XU,(Y) + 4x3 Y, 2, t), 

ux, J’, 2, t) = V,(Y) + 4x, y, z, f), (3) 

W(x, y, z, t) = w(x, y, z, t), 

where V, is some smooth function that tends to the entrainment values at + a3 but 
is otherwise arbitrary, and U, = - 8 v,/a~. The gradient term in (1) is eliminated by 
operating on the momentum equations with V x and VxVx. Retaining the 
streamwise components of both and using (2) yields dynamical equations for the 
streamwise perturbation velocity and vorticity: 

a2 &V’U=v:H,-- ax ay 
a a 
go,=--H,-;H2+&V2q, 

ay 
where 

0: _x+(iz 
ay2 az2 

(4) 

(5) 

is the “perpendicular” Laplacian. The streamwise components of the curl operations 
are preferred over the other two because o, is the only vorticity component with 
boundary conditions fully defined by Dirichlet boundary conditions on the velocity. 
Equations (4) and (5) govern the time advancement of u and 0,. However, H 
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contains the other velocity and vorticity components which must be recovered from 
U, wr, and the boundary conditions. The spanwise velocity w is recovered from the 
continuity equation and the definition of w,, and then the vertical velocity o is 
obtained directly from the continuity equation: 

v2 o=aw1 a2u 1 ay a.x az' 
ati au aw -= ---- 
ay a~ ai (7) 

Once all the velocity components are known, the other vorticity components follow 
from their definitions. 

Dirichlet boundary conditions are specified for u at the inflow (x = 0) and out- 
flow (x = L,) boundaries. Since (4) is a fourth-order equation, it requires a second 
boundary condition at each end. These are Neumann conditions obtained from 
continuity and the boundary conditions on u and MI: 

au au aM9 
-= ----3 ax ay az x=0, L, 

Note that (7) and (8) are not redundant since the former will never be applied at 
the boundaries. Boundary conditions on o1 are also obtained from the conditions 
on v and w: 

aw au 
““G-z3 x=0, L,. 

Periodic boundary conditions are used in the spanwise direction over the domain 
0 < z < L=. As implied by (3), u = 0 at infinity. 

At the exit, each velocity component is required to satisfy a “convective” outflow 
boundary condition of the form 

where c = ( U1 + U2)/2 is the nominal speed of the large structures [4]. This 
boundary condition is a severe approximation of the Navier-Stokes equations 
obtained by assuming the vertical structures are “frozen” as they leave the domain. 
The success of this condition relies on having a positive total streamwise velocity 
at the outflow boundary to “wash” any errors produced out of the domain. The 
opposite happens, usually with disastrous consequences, if the velocity ratio n is 
too small (say, LI < 0.15). Note that replacing c with the local streamwise velocity 
makes the condition less physical, because the effects of pressure in keeping the 
structures “coherent” would then be neglected. 
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Buell and Huerre [ 141 showed that while (10) allows vertical structures to pass 
out of the domain with essentially no upstream effect on the vorticity, it does create 
a small-amplitude potential flow. This can be thought of as due to the sudden 
“impedance” change between the Navier-Stokes equations in the interior and the 
above condition at the outflow boundary. The incompressibility constraint allows 
the potential fluctuations to be communicated everywhere instantaneously. These 
fluctuations do not appear to interact with the shear layer in the interior (that is, 
the “receptivity” of the shear layer to potential fluctuations is small), but they do 
interact with the inflow boundary conditions to produce vertical fluctuations near 
the inflow. These, in turn, are amplified as they are convected downstream. This 
“global feedback” mechanism allows the mixing layer to be self-sustained even 
though mixing layers have been shown to be only (locally) convectively unstable 
and not absolutely unstable [15]. Clearly, better boundary conditions are needed 
at either the inflow or the outflow to break the feedback loop. As a practical matter, 
the feedback appears to have an effect similar to low-amplitude noise added to the 
inflow boundary conditions. We note that experimental facilities have the same 
problem; small changes in wind tunnel geometry either upstream or downstream of 
the test section can cause significant changes in the test section. 

3. NUMERICAL METHOD 

In this section we describe the numerical method used to solve (4)-(7) with the 
associated boundary conditions. Since we intend to treat the terms on the right- 
hand sides (RHSs) of (4) and (5) explicitly, they only require methods to evaluate 
derivatives in each direction and a method for evaluating nonlinear terms. The 
LHSs of (4) and (6) need methods for the inversion of 3D and 2D Poisson equa- 
tions, respectively. The recovery of u from (7) requires a y-integral. All of the 
calculations are performed in physical space in x and Fourier (or “wave”) space in 
y and z, except for the evaluation of the nonlinear terms, H. These are evaluated 
by transforming the velocity and vorticity fields to physical space in y and z, 
performing the cross product, and transforming back. The nonlinear terms are then 
of the same form as the viscous terms, and both may be treated like source terms. 

For second-order equations like (5), the implementation of boundary conditions 
is usually obvious. But, when and how to implement the four boundary conditions 
on u for the fourth-order u-equation (4) is not as obvious. The basic principle 
underlying the numerical implementation of boundary conditions is the same as 
the reason boundary conditions are needed analytically: the spatial derivatives 
appearing in the problem require them. Consequently, the biharmonic operator 
in (4) requires four boundary conditions regardless of whether it is to be evaluated 
in an explicit time advancement scheme (as in this paper) or inverted in an implicit 
one. The role of the two Neumann conditions is similar to their role in stream- 
function-vorticity methods. Together with the Dirichlet conditions they allow the 
computation of the Laplacian of u (or of the streamfunction) on the boundary, 
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which in turn is needed to calculate V* (V*u) (or V* vorticity) in the interior. Trying 
to replace implementation of Neumann conditions in this case with one-sided 
differencing for the first Laplacian will yield an ill-posed problem and disastrous 
results. On the other hand, the last operation in the time advancement of (4) is to 
invert the Laplacian on the left-hand side while imposing only the two Dirichlet 
conditions. Yet the resulting solution u will satisfy all four boundary conditions. 
Indeed, the only time we need to know or care about the derivative of u at the 
boundary is when the biharmonic is evaluated. An examination of standard 
numerical methods for boundary value problems shows that they do make use of 
the boundary conditions in the approximation of the spatial derivatives and for no 
other purpose. 

The next live subsections discuss the various numerical methods for the 
operations mentioned above. 

3.1. Approximation of Streamwise Derivatives 

The first and second x-derivatives in (4)-(7) are approximated with new Pade 
finite difference formulas due to Lele [16, 171. An approximation for the fourth 
derivative is not needed since the biharmonic in (4) is evaluated as two successive 
Laplacians. Most of the following is a specialization of the general formulas 
presented in [ 171 to simpler formulas. A one-parameter family of fourth-order 
accurate schemes for the first derivative of a functionf(x) is given by 

where the prime denotes the numerical derivative, the subscript j, 0 6 j d J, refers 
to the grid point number, and Ax = L,T/J. The classical fourth-order Pad& formula 
is obtained by setting a=4, while a= 3 (which is used here) gives a sixth-order 
scheme. 

The “order” of a scheme pertains to its behavior only for vanishingly small 
wavenumbers. As useful as this concept is, we need a measure of the accuracy of a 
scheme for moderate to large wavenumbers. If we define an effective wavenumber 
k, by differentiating a periodic function, 

f = exp( ikx), f’ = ik, exp(ikx), (12) 

then the accuracy of various schemes for all wavenumbers may be compared. 
Inserting (12) into (11) and into the standard second- and fourth-order central 
differencing formulas yields the curves shown in Fig. 2. Fourier methods are exact 
for (12), thus k, = k (the diagonal line in Fig. 2). The dominant error in these 
approximations is dispersion, which is related to the departure of k, from k. Clearly 
the Padt approximations are superior to the central differencing ones; the former 
allows significant energy to exist in modes up to half the spatial Nyquist frequency 
(k, _= n/Ax) without much dispersion. Furthermore, the sixth-order scheme is 
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FIG. 2. Effective wavenumber for numerical approximations of the lirst derivative: (a) second-order 

central differencing; (b) fourth-order central differencing; (c) Eq. (7) with r=4 (classical Padt); 
(d) Eq. (7) with c( = 3 (sixth order); and (e) Fourier (exact). 

significantly more accurate than the classical Pade scheme. None of the five 
schemes produce any numerical dissipation since k, is real in all cases. 

By increasing the bandwidth of either side of (11 ), a multiple-parameter family 
of fourth-order schemes can be constructed [17]. This family contains members 
that are accurate up to k=0.9k,, approaching Fourier methods in accuracy. It is 
not clear at what point increases in complexity begin to outweigh increases in 
accuracy, or what the importance is of aliasing errors. The answers to these ques- 
tions will determine whether one should upgrade the present algorithm to include 
more accurate finite difference approximations. 

At and near the boundaries lower-order formulas must be used. For j = 0 and 
j = J, compact one-sided third-order approximations are used: 

(13) 

To evaluate au/ax on the RHS of (7) the above are replaced with analytical expres- 
sions, since we have boundary conditions on this particular derivative. At j = 1 and 
j=J- 1 (11) is used with cc=4, and at j=2 andj=J--2 (11) is used but with 
tl’ = (16 + 32rx)/(40 - a) substituted for CI. As discussed in [ 171, these modifications 
ensure both stability and numerical conservation for equations of the form 



SPATIALLY-DEVELOPING FREE-SHEAR FLOWS 321 

(a/&)~ = (a/&c)f(u). Unlike wall-bounded flows, there is little penalty for using 
less-accurate formulas at the boundaries of free-shear flows. At the inflow the 
streamwise gradients are small, and at the outflow extra numerical errors are 
washed out of the domain. 

For the second derivative, Lele [ 16, 171 presents a large bandwidth formula 
which we specialize to a one-parameter family of fourth-order accurate formulas: 

Here, y = 10 is the classical Pade formula and y = y produces the sixth-order 
version. The effective wavenumber is defined by 

f = exp( ikx), f" = -k: exp(ikx). (15) 

In Fig. 3, kz is plotted versus k for the two central-differencing schemes, three 
values of y, and the Fourier method (which yields a parabola). For the evaluation 
of the viscous terms, kz is proportional to the numerical dissipation. Among the 
finite difference schemes plotted, we see that y = 4 comes closest to reproducing the 
physical dissipation and is the value we use here. It is slightly over-dissipative at 
moderately high wavenumbers and under-dissipative (like the other schemes) at the 
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kAx 
FIG. 3. Effective wavenumber for numerical approximations of the second derivative: (a) second- 

order central differencing; (b) fourth-order central differencing; (c) Eq. (10) with 1; = 10 (classical Pad&); 
(d) Eq. (10) with y = 5.5 (sixth order); (e) Eq. (10) with ;’ = 4; and (I) Fourier (exact). 
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highest wavenumbers. As pointed out by S. Lele, the preferred member of a fourth- 
order family of schemes is not necessarily the sixth-order one. However, the sixth- 
order schemes for both the first and second derivatives coincide with the ones that 
have the highest values of k,(k), with the constraint that k,(k) < k. 

At the boundaries one of the following two sets of third-order formulas is used: 

or 

.fdl+2f;)= -&S _ --?- Gl-f2h r-o 2Ax2 
(17) 

The latter pair of formulas is used when boundary conditions on both the function 
and its derivative are available, as is the case for U. The former pair is used in all 
other cases. Note that well-posedness requires the use of (17) when the fourth 
derivative is to be calculated, but its use is optional if just the second derivative is 
needed. Atj= 1 andj=J- 1, (14) is used with y= 10. 

3.2. Approximation of Vertical Derivatives and Integrals 

In this section we briefly review the method of Cain et al. [S] and describe 
new modifications to it. The physical domain - DS d y d co is mapped to the unit 
interval 0 d [ d 1, using 

J’= -p cot(ni), 

where fl is the mapping parameter. One of the properties of this mapping is that a 
uniform grid on [ yields an algebraically-stretched grid for large y, viz., Ay - y2 as 
J’ -+ a. This property is necessary to resolve the algebraically-decaying potential 
flow associated with vertical structures. Grosch and Orszag [IS] and Metcalfe et 
al. [19] compared calculations for several problems based on both algebraically- 
and exponentially-stretched grids and found that the former is significantly more 
accurate when a potential flow must be resolved. For the calculations reported here, 
we find that the best results obtain when only half of the grid points in y contain 
vertical flow. With two homogeneous directions, it is possible to represent the 
potential flow with a small number of functions and to use successfully a mapping 
with an exponentially-stretched grid for large y. This results in significant gains in 
efficiency; upwards of 80% of the grid points may contain vertical flow [20,21]. 
It should be possible to apply such ideas to flows with more inhomogeneous 
directions, but this has not yet been investigated. 
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Given a function f(y), y-derivatives are found from 

(18) 

Iffis represented by a finite trigonometric series, then it is a trivial matter to write 
down its derivative analytically as another finite series using (18). However, because 
of the sin* term in (18) the latter will have two more terms than the former. Since 
we want the derivative series to contain no more terms than the function series, an 
approximation must be made. One possible approximation was used in [S], but it 
produces nonzero derivatives at infinity and leads to flows with nonzero divergence. 
While these errors are of the same order of magnitude as the last terms in the series 
(which should be small), the method would be more satisfactory if the boundary 
conditions (no fluctuations at infinity) and conservation of mass are satisfied 
exactly. 

First, consider a function f that can be represented exactly by a finite sine series, 
M 

f(y) = 1 .A, sin(nd3. (19) 
m = 0 

We want an approximate derivative of the form 

m = 0 
(20) 

that satisfies the above constraints and can be calculated from 

g=Bl, (21) 

where B is a tridiagonal matrix of order M + 1 (when reordered properly; assuming 
M is even, the M/2 odd modes decouple from the M/2 + 1 even modes). The 
elements of a matrix B satisfying all these constraints are given in the Appendix. It 
is easily verified that any derivative calculated with this approximation is zero at 
infinity and that the derivative is analytic if f,,,, ~ I =fM = 0. If f is defined by a 
cosine series, then the matrix A yields the sine series approximation to the 
derivative (A is given in the Appendix). The second-derivative matrix operator is 
obtained by multiplying the first-derivative matrices together. For a cosine series we 
use BA, and for a sine series, AB. 

Before we can proceed further we need to decide how to expand each component 
of the velocity vector (the expansions for the vorticity components follow directly 
from the velocity expansions). With the restrictions implied by the continuity 
equation, there are three choices: 

(a) cosine expansions for u and IV, sine expansion for v, 

(b) sine expansions for u and w, cosine expansion for u, or 
(c) periodic expansions for all three components. 
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Any of these may be used. We chose (a) (mostly for historical reasons), although 
(c) may be slightly more efficient numerically. One advantage of (a) is that it is 
compatible with a sine expansion for cc),, which means its boundary conditions at 
infinity are satisfied automatically. 

The other operation that needs to be performed is integration of (7). Since this 
is the step that guarantees continuity, we want to be able to do it exactly. Replacing 
the RHS of (7) with h and suppressing x, z, and t for brevity, we write 

u(y)={” b(()&. (22) % 

In order for u to be well represented by a sine series, (22) implies that b must satisfy 
three constraints. Finiteness of u requires b( - a)= b(w) =O, and the boundary 
conditions U( - cc ) = u( co) = 0 require j” ~- b(y) dy = 0. If we assume 

b(y) = g r;,, cos(~~rni), 
m = 0 

(23) 

then the three constraints become 

(24b) 

Since (23) and (24) together imply that there are only M - 2 independent elements 
of 6 and since BG gives the analytical derivative of o if fi,,, = 0, m > M - 2, the exact 
solution of (22) can be written as 

M-2 

u(y) = C Cm sin(rrm[), (25) 
wl= I 

where C is found from BG = 6. In practice, one removes the first row and last two 
rows of this system to obtain a square nonsingular tridiagonal system of order 
M - 2 which is easily solved. The three removed equations will be satisfied if (24) 
holds. As a check, one can verify that B contains three linear dependencies 
corresponding to the solvability conditions on 6. Returning to (7), we note that 
(24) applies to both u and w. 

3.3. Approximation of Spanwise Derivatives 

The treatment of the spanwise direction is classical [6]. We use periodic 
functions of the form 

N/2-L 

f(z) = 1 ym exp( i2wzz/L,) + c.c., (26) 
t1 = 0 
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where N is even, sn is complex, and cc. denotes the complex conjugate. Derivatives 
are analytical: 

g= $ N’E ’ rfTn exp(i2nnz/L,) + c.c. 
L II=0 

3.4. Solution of the Poisson Equation 

The solution of the elliptic operators in (4) and (6) must satisfy (24), so it is 
important for them to be inverted properly. The result of the time advancement 
scheme (next section) applied to (4) is a Poisson equation: 

V’ Au(x, y, z) = Y(X, y, z), (28) 

where Au is the difference of u between two successive substeps, and Y is a linear 
combination of the RHS of (4) evaluated at two time levels. In this section we sup- 
press the explicit dependence on t, since all quantities are evaluated at the same 
time level. There are two major problems with using the approximations discussed 
above without modification on the LHS of (28). First, any finite difference method 
in the x direction combined with a mapped Fourier method in the y direction 
would yield a very large sparse matrix. There are many ways of solving such a 
matrix, but they are all much slower than methods that decouple the two directions 
and then invert one-dimensional operators. Second, even after inverting such a 
matrix, the result (after solving (6) and (7)) may not satisfy continuity or the 
boundary conditions. 

Standard finite difference methods applied to a multi-dimensional Poisson equa- 
tion share the first problem. Fortunately, it is possible in some cases to decouple 
one or more of the directions from the others through the use of a transform 
method. These methods are based on expanding the solution in terms of the eigen- 
functions of the numerical matrix operator in one or more directions. Transforming 
the equation to eigenfunction space yields a diagonal operator for these directions. 
The final solution is obtained by transforming the result of the Poisson inversion 
back to the original space. In the staggered-grid method of Kim and Moin [2] it 
is possible to do this exactly since the eigenfunctions and associated eigenvalues are 
known analytically. This is central to their method because the satisfaction of 
continuity requires the numerical approximation of the Laplacian to equal the 
divergence of the gradient, and this property must be preserved through the trans- 
formations. Here, we propose a transform method where both of these features are 
sacrificed in exchange for greater generality and accuracy. The use of approximate 
eigenfunctions and eigenvalues results in extra truncation error (consistent with the 
overall scheme) near the boundaries. This is not expected to be important in free 
shear flows where much more accuracy is required in the interior of the domain 
than near the inflow and outflow boundaries. The lack of the identity V. V = V2 for 
the numerical operators is not significant since the continuity equation is inverted 
directly. 
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Since du does not satisfy periodic, homogeneous Dirichlet or homogeneous 
Neumann boundary conditions, a transform method cannot be used directly. 
Instead we must first define a computational variable U* that does satisfy one of 
these boundary conditions. We choose homogeneous Dirichlet conditions and set 

h=u*+ 1-s fo~~~~~+~fJ~~~~)+ho~~~~o~~i~~+hJ~~~~J~~,~~, (29) 
i > li \ 

where 

fo( y, z) E du(x = 0, y, z), fJ(Y, -7) = ux = L,, y, 21, 
h,(x) E -& (2L2, - 3xL., + x2), 

: 
h,(x)- -&p-x*), 

.x 

go(Y, 4=~du(:, Y, ~)/,:=0=e,(Y, Z)--V:fo(Y, z), 

KJ(YJkgdu(X, Y, z)l.Y=L,=eJ(Y~ 4-WJ(YT zh 

e,(y, z) = 4x = 0, y, 21, e,(,v,z)-r(x=L,, 14~1. 

Inserting (29) into (28) yields a Poisson equation that can be solved by a transform 
method: 

EU-Ze,-h,VIg,-h,V:g,, (30) 
r 

The function f0 and fJ in (29) serve to force U* to be zero at x = 0 and x = L,, and 
go and g, force r* as well as a’u*/ax’ to be zero at the two ends. It is now natural 
to expand u* in a sine series: 

J -1 

u*(x, Y, z) g 1 UT ( y, z) sin( njx/L,). (31) 
i= 1 

In general, a4u*/ax4 is not zero at the boundaries and thus sine functions only 
approximate the eigenfunctions. This approximation is equivalent to using Fourier 
functions to represent a periodic function that has discontinuities in the fourth 
derivative. This results in fourth-order (in dx) errors near the discontinuities (i.e., 
boundaries) and fifth-order errors globally (in the L, norm). After expanding r* in 
a series similar to (31) (in practice, by using a fast sine transform, Cooley et al. 
[22]), and using the results of Section 3.3 and the orthogonality properties of sine 
and Fourier series, (30) reduces to a set of ordinary differential equations, 

d* 
--T- 
dy 

P’: - s3 
> 

qxY) = ~;;“,(Jd, l<j<J--1,06n,<N/2-1, (32) 
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where i;(y) and F;(y) are complex, qn = 27cn/L,, and p/f is the effective wave num- 
ber for the approximation of a2/ax2. Here, we use (14) with y = 10: 

An effective wavenumber corresponding to a more accurate formula (e.g., by using 
y = 4) does not seem to be warranted. It is tempting to replace (33) with the exact 
wavenumber, pi = pi 5 nj/L,; however, this always seems to be less accurate. In one 
numerical test the use of pi instead of (33) doubled the numerical error. Given first 
derivative approximations of a certain accuracy, the relationship between the 
accuracy of the Poisson equation inversion and the accuray of the final solution is 
not well understood. 

Before we proceed with the solution of (32) we reduce it to its simplest form: 

( > 5-u 4Y)=dY), a > 0. 

As shown previously, the solution of (34) must satisfy the solvability conditions 
(24) so that the continuity equation (7) can be integrated for u. One way to ensure 
the satisfaction of (24) is to perform a Galerkin projection. The solution u is 
expanded in a special set of basis functions, 

M-2 

4v)= c %zcL(i)~ m=l 
where 

cos(n(m - 2)[) - 2 cos(?-cm~) + cos(n(m + 2)5), 
4m(i)= {cos(zm:, - cos(7c(m + 2)[), 

m even, 
m odd. 

Note that the number of coefficients is three less than in the normal expansion 
u(y) g C,“=, ti, cos(nm[), and that u can be reconstructed from any ti’ and it will 
satisfy (24). The Galerkin method consists of substituting the appropriate expan- 
sions into (34), multiplying through by #,([), and integrating: 

In matrix form, this yields the system 

(36) 

D(E - aI) CB’ = DB, (37) 
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where I is the identity matrix of order M + 1, C is the (M + 1) x (M - 2) matrix 
that converts a 4 series into a cosine series, E = BA, and D is a (M - 2) x (M + 1) 
matrix of integrals: 

D,,,, = i ’ Wnmi) d,(i) 4, O<m<M, 16n<M-2. 
0 

The columns of C are given by 

(Cm-*,m, C,?L,~ Cm+*,m)= (12 -22 l)> 2<m<M-2, m even, 

(Cm,,, Cn,+*,m)= (1, -1h 1 <m<M-3, m odd. 

Note that D is simply 0.5 times the transpose of C except for one element: D,, = 1. 
Equation (37) can be inverted as is; however, this requires the solution of a nine- 
band matrix for the even modes and a seven-band matrix for the odd modes. It 
would be advantageous if the LHS of (37) could be factored into simpler matrices 
(since the amount of linear algebra required is proportional to the square of the 
bandwidth). The matrices E and C do not commute, but it turns out that it is 
possible to rewrite (37) as 

DC(E’ - aI) 8’ = DB, (38) 

where E’ has the same pentadiagonal structure as E. The elements of E’ are given 
in the Appendix. The solution of (34) is obtained in three steps: 

(DC) 9’ = DB, Wa) 

(E’ - aI) a = S’, (39b) 

e = CiY. (39c) 

The cost of implementing (39a), (39b) is about 62 % of the cost of (37). DC is a 
symmetric matrix of order M - 2, which, from the above definitions, can also be 
defined by 

(DC),,,, = j1 9,(1) Q,,(i) 4, 1 <m,ndM-2. 
0 

Thus (39a) is a projection of an arbitrary cosine expansion onto a 4 expansion of 
the form (35). Since it is a Galerkin projection, the error is minimized in L*[O, 11. 
Minimizing the error in another space would yield a different projection. The solu- 
tion of (28) requires four additional steps: the construction of r* (30) and its sine 
transform to wave space in x before (39) is carried out, and the transform of ii* 
back to physical space in x and the reconstruction of Au (29) after (39). 

The spanwise velocity w is subject to the same restraints as u so nearly the same 
procedure is used to solve (6). Since there are no x-derivatives on the LHS of (6), 
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this equation immediately reduces to an equation like (32) with p’: = 0. Then (39) 
is used directly to find w, without transforming to wave space in the x direction. 

3.5. Time Advancement 

One member of a family of explicit third-order Runge-Kutta schemes discussed 
by Wray [23] is used for the advancement in time of (4) and (5). These schemes, 
applied to the model equation du/iJt =f(~) are defined by 

z?+ ‘I= zP’+ At(ck.f(zbk)) + dJ(u’“- I’)), (40) 

where k is the substep number, k’ = 1 + mod(k, K) is the substep number within a 
time step (At) and K is the number of substeps in a time step. The particular set 
of parameters we use here are 

K= 3, 
8 Cl = fi, d, = 0, 

5 
c2=ii, d,= -& 

3 
c3 = 4, d,= -A. 

This scheme is compact in the sense that it requires the same storage and arithmetic 
as second-order Adams-Bashforth (defined by K= 1, c1 = 1.5, d, = -0.5), but it is 
third-order accurate. Third-order Runge-Kutta schemes are stable for CFL num- 
bers less than J?, while Adams-Bashforth schemes are unconditionally unstable 
for linear hyperbolic equations (although they can be stabilized by viscous terms). 
Also, the former is self-starting (d, = 0), while the latter requires a separate method 
for the first time step. This allows one to change At at the beginning of every time 
step (i.e., when k’ = 1 ), and thus to keep the CFL number very chose to the maxi- 
mum. For the Reynolds numbers we typically consider, the maximum time step due 
to the viscous stability restriction is about ten times larger than the CFL restriction. 
For the model equation au/& = --Au, the former restriction is At ,< 2.5/L 

After o is obtained from the derivatives of u, both (I) and u are transformed to 
physical space using fast sine and cosine transforms (as appropriate) in y and fast 
real/half-complex Fourier transforms in z [22]. The nonlinear terms, H, are then 
evaluated in physical space on a grid with M,. collocation points in the y direction 
and N, points in the z direction, The multiplications needed for this step produce 
aliasing errors unless 50% more points are used in the collocation grid than in the 
original expansions (i.e., the “3/2 rule,” M,. = 1.5M, etc.). However, if the Fourier 
expansions converge well enough (which they will for well-resolved simulations) 
then a large part of the aliasing error will be eliminated by using just 10 or 20% 
more collocation points than modes, with smaller additional reductions in error by 
using 50 % more points. We typically use between 25 and 50% more collocation 
points than Fourier modes, depending on the amount of conservatism desired and 
which transform lengths are the most efficient numerically. In some cases full 
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dealiasing is necessary to exactly preserve in the solution symmetries present in the 
inflow boundary conditions. 

The algorithm can be summarized briefly as follows. At the beginning of a time 
step (first substep), only U, o, and the boundary conditions on the three velocity 
components are known. The RHS of (6) is evaluated and the 2D Poisson equation 
for vv is solved at each x. The continuity equation (7) is integrated to obtain u. The 
RHSs of (4) and (5) are evaluated, the 3D Poisson equation for u is formed, and 
o, is advanced in time. Finally, the Poisson equation is solved to yield the solution 
at the next substep. For the second and third substeps, the RHSs of (4) and (5) at 
the previous substep are saved so that (40) can be evaluated. 

4. ANALYTICAL TEST PROBLEMS 

The various parts of the code are tested by solving three problems with analytical 
or independently-known solutions. Diffusion equations are solved in the first sub- 
section, the nonlinear Stuart solution in the next subsection, and a 3D linear 
stability problem in the last subsection. 

4.1. 30 Stokes Flow 

The time advancement, viscous, and Poisson sections of the code are tested by 
solving (1) and (2) with H = 0. One possible solution to the resulting diffusion 
equations is 

4-T I’> -?, t) = COG) cos(z) (l;;;;‘,z 

xcxp(-2rv)exp(-(f+i$), 

a,(.~, y, z, t) = sin(x) cos(z) 
1 

(1 +4tv)“’ 

xexp(-2tv)exp[-(TL$), (4lb) 

where v = l/Re and y0 # 0 breaks a symmetry which would have forced the even 
modes in (41 a) and the odd modes in (41b) to be zero. Since the even and odd 
modes are treated differently, it is important that both are present in both 
equations. Boundary and initial conditions are extracted from (41), and we set 
L,=L,=27r, Re= 10, fi=4, JJ~= 1, N=4, and dt=0.005. Shown in Fig.4 are the 
max-norm errors of u and w, as a function of J and M at t = 1. We use a large 
value of M (64) in Fig. 4a to try to isolate the x-differencing errors, and a large 
value of J (96) in Fig. 4b to isolate the effect of truncating the trigonometric series 
in y. The expected results are obtained: fourth-order convergence with dx and 
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10 100 10 
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FIG. 4. Maximum error in u (0) and w, (0) for the solution of a 3D Stokes problem as a function 
fo (a) number of grid points in x (with M=64) and (b) number of Fourier modes in y (with J= 96). 

(apparently) exponential convergence with M. Further tests show that time- 
differencing errors are negligible compared to the spatial approximations in all 
cases. 

4.2. 20 Stuart Vortices 

A class of solutions to the 2D inviscid Navier-Stokes equations was given by 
Stuart [24]. One member of this class is defined by the streamfunction 

Ii/(x, y, t) = CJJ + ln(a cosh(y - yO) + b cos(x - ct)), (42) 

where a=JT $1 b - 1, u = 8 ali, and u = - a$/&. This solution has the appearance 

10-z IO0 

10-1, 

10-S 

b 10-2 k ; 
L 

O1 10" 5 ; 10-3 

E i 

.- 

g 

10-5 'Z 

E sz ,o-5 

lo4 
10-6 10-7 10" ';%:., 10-' b ,,/, 

10 100 

FIG. 5. Maximum error in u (0) and u (0) for the solution of a 2D Stuart vortices flow as a func- 
tion of (a) number of x grid points (with M= 64) and (b) number of Fourier modes in y (with J= 128). 
Full dealiasing is used in all cases. 
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of a 2D mixing layer with vortices being advected downstream at a speed c. It is 
a good test of the formation of the nonlinear terms, the solution of the Poisson 
equation, and the time advancement. It is also a very good test of the overall 
stability of the algorithm, since neither physical nor numerical diffusion is present. 
As in the previous subsection, we are concerned mostly with the errors due to the 
x and 4’ approximations. As before, time differencing errors are much smaller than 
the spatial error on the finest grid. 

The parameters used for this test are c = 1, a = i, L, = 2x, /I = 3, y0 = 1, and 
At = 0.01. In addition, Re = 10” was used to make the simulation effectively inviscid. 
Shown in Fig. 5 are the max-norm errors of u and 2; as a function of J and M at 
t = 1. These calculations wre fully dealiased by using M,. = 1SM. The two main 
sources of truncation error were isolated by using M = 64 in Fig. Sa and J= 128 in 
Fig. 5b. One sees fourth-order average convergence rates for the first case, and 
apparently eighth order (rather than exponential) convergence for the second case. 
The reason for the latter behavior is not known, but in any case it is certainly 
satisfactory. In Fig. 6, the effects of dealiasing are tested by comparing the results 
from Fig. 5b for u to those of calculations using M, = M (no dealiasing) and 
M,. = 1.25M (partial dealiasing). For this somewhat unrealistic problem, the partial 
and full dealiasing simulations are almost identical, with the errors in both up to 
10 times smaller than the non-dealiased simulations. As M increases all three tend 
towards each other faster than towards the exact solution, indicating that aliasing 
errors become less important for extremely well-resolved simulations. Of course, 
one is rarely in such a fortunate position. 

10 100 

M 
FIG. 6. Effect of the number of collocation points on the aliasing error for the u-component of the 

Stuart vortices flow: Cl, full dealiasing (M, = 1SM); 0, partial dealiasing (M,.= 1.2SM); and 0, no 
dealiasing (M, = M). 
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4.3. 30 Linear Stability 

The final test consists of forcing the inflow with a small-amplitude oblique wave 
and comparing the growth rate with linear stability theory. Spatially-developing 
(i.e., the frequency is real) eigenfunctions and eigenvalues of the Rayleigh equation 
are obtained from Chen and Sandham [25] for a frequency of 0.58, an oblique 
angle of 30”, and a velocity ratio ,4 = 0.2. The resulting growth rate and x-direction 
wavelength of the instability are 0.23351 and 8.31586, respectively. An amplitude of 
1O-6 at the inflow ensures linear growth for at least two wavelengths downstream. 
The numerical parameters used were J = 192, M = 64, N = 4, p = 3, At = 0.18, 
Re = lOlo, L., = 60, and Lz = 14.403494. The calculation was run until the instability 
wave approached the outflow boundary (one should avoid any feedback effect in 
this test). The average growth rate over 0 6 x < 15 and z of the fluctuations in u was 
found to be 0.23347. Convergence tests were inconclusive since the difference from 
the eigenvalue calculation, 4 x 10 ~ 5, appears to be only partially due to the numerical 
approximations discussed earlier. Other contributions to this difference come from 
the residual of the transient (an error not present in temporal calculations), and 
errors in the eigenfunction calculation. 

5. MIXING LAYER EXAMPLES 

For the present simulations, we used V,( y = - cc) = 0.004 and I’,( y = GO) = 
-0.01. These entrainment velocities where chosen to minimize the streamwise 
pressure gradient outside of the shear layer (this is analogous to experiments where 
the walls of the wind tunnel are angled slightly). This was not done particularly 
accurately, but fortunately the flow does not appear to be very sensitive to the 
entrainment velocity at infinity. In the next two subsections we show results for 2D 
and 3D mixing layer flows. 

5.1. 20 Flow 

Figure 7 shows contours of spanwise vorticity (We) for a 2D mixing layer with 
Re = 200 and n = 0.2. The numerical parameters used in this simulation were 
J= 192, M= 128, M,. = 144, /I = 8, and L., = 70. With these parameters the code 
requires 0.13 CPU seconds per substep on a Cray-XMP. The time step was 
adjusted every step to maintain the maximum CFL number in the domain at 1.7. 
Eigenfunctions of the Rayleigh equation are used to perturb the inflow profiles of 
u and u. The perturbation consists of two parts: a fundamental at a frequency of 0.5 
and an amplitude of 0.01, and a subharmonic at half the frequency and amplitude. 
The former leads to the initial rollup and the latter to pairing of the “rollers” which 
starts at x = 40. Note that although there is no numerical diffusion, the contours are 
very smooth. This can be attributed to the accuracy of the first derivative 
approximations which produce dispersive errors small enough to be damped by the 
limited amount of physical diffusion available. 
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0 20 40 60 

x 
FIG. 7. Contours of -w? for a 2D mixing layer, Re = 200, ,4 = 0.2. Contour interval is 0.1. 

5.2. 30 Flou 

In this subsection we show what happens when counter-rotating streamwise vor- 
tices are added to the above 2D flow. Both theory [26,27] and experiments [28] 
indicate that the “natural” or most amplified spanwise wavelength of the streamwise 
vortices is 6&70% of the 2D roller spacing (which is about 9.2 from Fig. 7). We 
chose a spanwise domain length of Lz = 5.5 and set the boundary conditions on v 
and vv so that 

0,(x=0, y,z)= ‘9 (4y2 _ 2 - p) e - +gkz + c,c., 

where k = 27-c/L, is the spanwise wavenumber. Because of the vortex stretching 
terms of the NavierrStokes equations, smaller scales are created than in the 2D 
case, which lack such terms. Thus, a finer grid is needed. We found that the 
parameter set J= 256, M= 144, M, = 192, fi = 8, N = 24, and N,. = 32 works well. 
This simulation required about 7 CPU s per substep on a Cray-2. 

Shown in Fig. 8 are contours of w3 in two of the x-y planes and contours of w, 
in the plane midway between these two. The first two plots show the initial laminar 
layer, development of 2D rollers, and 3D cup-like structures. A comparison of these 
plots with Fig. 7 shows minimal differences up to x = 25 (ignoring the phase of the 
instability), but increasingly larger differences downstream. The third plot shows 
the increase of positive w, in the braid regions between the main rollers and 
negative w, within the rollers themselves. Note that the former (called “ribs”) are 
of the same sign as the inflow forcing and the latter are of opposite sign. The 
ribs are intensified by the 2D strain field of the main rollers, but this mechanism 
cannot increase the circulation around a rib. However, since the lateral size of the 
ribs remains about constant, the circulation evidently increases significantly. 
The mechanism for this is the “conversion” of w3 into w1 by one of the “vortex 
stretching” terms of (2) (written in nonconservative form): 

aa, au -= . . . 
at +Y$w’+ ‘... 
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FIG. 8. Contours of vorticity for a. 3D mixing layer, Re=200, n =0.2: (a) --(I,~ at :=O, (b) -wz 
at z = 2.75, (c) o, at z = 1.83. Contour interval is 0.15. 

The “cups” in the o3 plots are due to the local strain fields of the ribs and the dis- 
torted rollers. These strain fields are strong but very localized and cause extreme 
enhancement of w3 along the top or bottom (depending on z) of the rollers. In the 
present simulation the magnitude of the vorticity in the cups may reach 1.7 times 
that of the inflow. The opposite-sgned o, in the middle of the rollers is also due to 
the 3D distortion of the rollers. Note that the cups associated with a roller are not 
at the same x location; the upper ones are displaced downstream from the lower 
ones. The vortex lines that connect the cups thus have an x component as well as 
y and z components. One can verify that the sign of o1 thus derived is consistent 
with Fig. 8c. The relative displacement of the cups and resulting o, in the rollers 
are necessary to counteract the advection effects of the ribs and thus to prevent the 
cups from convecting away. 

The four .x--y cuts of w, shown in Fig. 9 demonstrate the downstream develop- 
ment of the ribs. They start off as tilted elliptical vortices, where the aspect ratio 
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FIG. 9. Contours of o, corresponding to Fig. 8 in y-z cuts at (a) x = 28, (b) x = 38, (c) x = 48, and 
(d) x = 63. Contour interval is 0.15. 

and angle are determined by a balance between the effects of self-induction, 2D 
strain from the rollers, and viscosity. As the vortices gain strength through the 
mechanisms discussed above, the self-induction effect begins to dominate and the 
vortices “collapse” into nearly circular ribs [29]. The fourth plot is a cut 
downstream of a pairing of the rollers, but little direct effect of the pairing is seen 
on the ribs. However, there are many other possibilities for the inflow boundary 
conditions which may produce qualitatively different flows. These issues will be 
investigated in more detail in later papers. 

6. CONCLUSION 

We have presented here an accurate numerical algorithm for the solution of the 
3D incompressible Navier-Stokes equations. The method is based on compact 
Runge-Kutta time differencing and three different methods for the three spatial 
directions. The Pade finite difference formulas of Lele [ 16, 171 with new modilica- 
tions at the boundaries are used for derivative approximations in the streamwise 
direction, a new version of the spectral scheme of Cain et al. [S] is used in 
the (infinite) vertical direction, and a classical Fourier method is used in the 
homogeneous spanwise direction. For finite difference methods we emphasize the 
accuracy attained for moderate- to high-frequency functions, rather than the order 
of accuracy for asymptotically low-frequency functions. In addition, a Galerkin 
projection procedure is developed for the solution of the Poisson equation. This 
procedure ensures the satisfaction of the continuity and boundary condition 
constraints on the velocity field, but does not require the solution of a large sparse 
matrix. The results from 2D and 3D mixing layer simulations show the ability of 
the method to resolve strong gradients and complex solutions. 
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APPENDIX 

The elements of the tridiagonal matrices A and B which define the numerical first 
derivatives of cosine and sines series, respectively, in the J’ direction are 

A m,m-2 - - - Brnm 2 = (m - 2)i(4~), 

A “,,??I = - B nr,nr = -m/M8 

A nt,m+2 = - B,,,, m + 2 = cm + 2)i(4h 

where 0 <m < M. Ignoring elements outside the tridiagonal matrix structure, the 
exceptions to the above are 

A,,, = 0, 

A I., = - 3/(48)> 

B,,, = l/(4/3), 

A -A M- l,M- I - -A,-,,, .3=A,.,~,=O, M-M- 

B -B M-l,M-I - - BM_,,M-, =BM-,,,=O. M.M - 

Equation (35) defines a pentadiagonal matrix E’ of order M- 2. The elements are 

Ek?,l?-4= -cm(m-2), 

EL-2 = 
i 

4cm2, m odd, 
4cm(m - l), m even, 

En,, = 
1 

- 2c( 3m’ + 6m + 4), m odd, 
- 6cm2, m even, 

J%,t?Tf2 = 
i 

4c(m + 2)2, m odd, 
4cm(m + 1 ), m even, 

CW?lt4 = 
- c(m + 2)(m + 4), m odd, 
- cm(m + 2), m even, 

where c = 1/(16/P) and 1 <m < M - 2. Ignoring matrix elements outside this range, 
the exceptions to the above are 

E;, = -27c, 

J%-~.M-,= c(M-3)(3M- ll), 

EL 3x,+-3= -c(M- 3)(3M- 7). 
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